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Abstract

This paper presents a numerical simulation of melting of chemically pure material in two-dimensional square cavity.

A single-domain model is used which does not require interface tracking and allows the use of a fixed grid in order to

solve governing transport equations. However, a fully conservative control volume method, using r-adaptive moving

grid, is implemented to enhance the precision. Simple, user-defined function is introduced to control the density of the

grid generated with a robust elliptic generator. The simulation is tested extensively on a one-dimensional phase change

problem which enables the comparison of the results with a existing analytical solution. Finally, the method is assessed

on cases corresponding to melting of tin and octadecane driven by natural convection.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Melting; Grid generation; Adaptive moving grid
1. Introduction

An accurate prediction of the time evolution of a solid–liquid phase change system is not a trivial task,

even though the mechanisms of solid–liquid phase change are well known. For example, comparison ex-

ercise [1] for the case of melting of a chemically pure substance in a two-dimensional (2D) square cavity,

driven by natural convection, shows substantial differences among contributed solutions. Moreover, only 6
out of 13 contributors solved the problem for all four proposed sets of relevant dimensionless numbers,

illustrating the need for further development of accurate and robust methods. This paper presents a pro-

posal and an investigation of such a method which is tested on the previously cited problem.

The physical models of the phase change systems on the continuum scale can be divided in two cate-

gories, depending on the approach: multi-domain and single-domain. Within the multi-domain approach

the transport equations describing the conservation of energy momentum, and other relevant quantities are
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written for each phase separately. Generally, the phase interface moves, therefore the definition domain for

each partial differential equation (PDE) changes. Thus, the numerical solution of the relevant PDEs re-

quires interface-tracking. The case of melting in a cavity was investigated with this approach by some of the
earliest authors [2–4], who employed the coordinate transformations to map the irregular physical domain

to rectangular computational space. They calculated the new interface position and the corresponding

coordinate transformation after achieving stationary state. However, this quasi-stationary assumption is

limited to cases with relatively slow interface movement. Also, stationary state may not exist even with fixed

interface position. More recently, an interface-tracking control-volume finite-element method using a

moving non-structured grid was implemented for melting and solidification problems by Wintruff et al. [5].

In their method the grid adapts to the solid–liquid interface, which is calculated from the heat flux balance

and the grid quality is controlled with a local grid refinement method. This method becomes troublesome
when the topology of the interface changes (merging or breaking) and is rather complicated to be imple-

mented for three-dimensional (3D) problems. Also, the interface-tracking is not suitable for the cases where

a phase change region appears (i.e. a solidification of a mixture) instead of a smooth interface.

The need for the interface-tracking and the grid adaptation can be evaded by the single-domain ap-

proach, within which the relevant physical quantities are continuous and their corresponding conservation

PDEs are valid throughout the entire physical system, regardless of the phase. As the definition domain for

the PDEs is not moving, a fixed grid can be used to obtain numerical solutions. Single-domain approach is

utilized by the introduction of a phase fraction function fkðrÞ so that: fk ¼ 1 if r inside kth phase, fk ¼ 0 if r
outside kth phase and fk 2�0; 1½ in interphase region; more formal definition of fk can be found elsewhere

(e.g. volume averaging method in [6]). A typical representative of single-domain approach is the enthalpy

method [7], where the heat flow at the interface is comprised by specifying a volume source term in a phase

change region. The common practice [8] to simultaneously calculate the velocity field in liquid phase and

deal with fixed velocity condition in solid phase is to treat the solid phase in interphase region as a porous

medium with the permeability prescribed as a function of the local phase volume fraction. Bennon and

Incropera [9] established this methodology in a more formal manner in their continuum model, which was

developed for the treatment of multicomponent phase change systems. Its main feature is the treatment of
solid and liquid phase as an interpenetrating solid–liquid mixture. On engineering scale, the interphase

region (where fk 2�0; 1½) well represents the so-called mushy zone appearing in cases such as solidification of

binary mixture. For isothermal phase change, on the other hand, the existence of interphase region is

unrealistic. However, the solutions obtained with the described approach can be considered realistic if the

region is sufficiently thin, i.e. when �spreading� of the interface to the phase change region is not too ex-

cessive. As the thinness of the interphase region is limited with grid cell size, thickness can be reduced by

increasing grid density at the region. This can be done by using an adaptive grid technique.

Lacroix and Voller [10] compared the single-domain fixed grid method with the multi-domain trans-
formed grid method. They recognized that the need for a grid generation and complexity of the imple-

mentation were the major drawbacks of the multi-domain approach. On the other hand, they specified the

smearing of the solid–liquid interface and ambiguity in defining the permeability coefficient as important

disadvantages of the single-domain approach. Because of the the solid–liquid interface smearing, the single-

domain approach is generally considered less accurate for isothermal phase change problems. However, it is

more robust as it is not sensitive to the changes of the interface topology. Also, it is more general as it can

be used for cases with the phase change emerging in a temperature interval. Lacroix and Voller suggested a

hybrid method using one-domain approach and adaptive moving grid to ensure larger grid density in the
vicinity of the interface and to increase the accuracy of the solution. Such a moving grid method, using

finite elements, has been developed and tested recently by Mackenzie and Robertson [11] for one-dimen-

sional (1D) phase change problems and later by Beckett et al. [12] for two-dimensional problems. To

generate grid, they utilized a coupled set of parabolic PDEs; the grid density was monitored with the

function depending on the distance from the calculated numerical approximation of the phase front.
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It is quite obvious that the precision of the solutions, using single-domain approach, can be increased

with the use of the adaptive grid. To claim effectiveness of this approach, the time for the grid adaptation

process should not exceed the time necessary to solve transport PDEs. This paper tries to establish robust
elliptic grid generator, well suited for the described problem. Grid density control is based on Anderson�s
work [13], i.e. with a simple user-defined function. The aim of the paper is also to evaluate the precision of

such an approach. This is done with the comparison of the computed and existing analytical solution for

one-dimensional case of melting with conduction. Finally, the effectiveness of the presented method is

assessed with simulations of the above mentioned test cases [1].

The outline of the paper is the following: Section 2 introduces the problem of melting in a square cavity

and relevant governing equations. The proposed solution method is described in Section 3 with emphasis

on adaptive grid generation. Section 4 presents the method�s test on melting with conduction, whereas in
Section 5 the results of the application to the problem of melting driven by natural convection are shown.

Section 6 is reserved for conclusions.
2. Definition of the problem

The problem [1] considers a two-dimensional square cavity, initially filled with a solid chemically pure

substance, uniformly at the melting temperature TM. The walls of the cavity are impermeable and no-slip.
Horizontal walls are adiabatic, whereas the left and the right wall are set to the fixed temperatures Tl > TM
and Tr ¼ TM, respectively. As melting starts near the left wall, natural convection takes place in liquid phase

because of the existing temperature gradient. The problem is shown schematically in Fig. 1; it is simplified

with the following assumptions: (1) the fluid is incompressible, (2) densities of both phases are equal, (3)

Boussinesq approximation [14] can be used, (4) liquid viscosity is constant, (5) specific heats of both phases

are constant and equal, (7) both thermal conductivities are constant and equal and (8) the solid phase is

fixed to the cavity walls. Those assumptions enable the characterization of the problem by three dimen-

sionless parameters: Prandtl, Rayleigh and Stefan number, denoted as Pr, Ra and Ste, respectively.
As stated in Section 1, melting is modelled with single-domain continuum model [9]. Applying it to the

above defined problem results in the following governing transport equations:
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Fig. 1. Schematics of the considered problem.
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oH
oFo

þ V � rH ¼ r2Hþ 1

Ste
V � rfl; ð1Þ
oV

oFo
þ V � rV ¼ �rP þ Prr2Vþ Pr RaHj� V � rðVl � VÞ � PrP

ð1� flÞ2

f 3
l þ dc

V; ð2Þ

where H , H, V, P and Fo are dimensionless specific enthalpy, temperature, velocity, pressure and time (i.e.

Fourier number), respectively. In the used model, the solid–liquid mixture is considered incompressible,

therefore r � V ¼ 0. The second term on the right-hand side (RHS) in (1) is the correction of the substantial
derivative due to the relative phase movement and has nonzero value in the interphase region (0 < gl < 1)

only. The same applies for the fourth term on the RHS of (2). The fifth term on the RHS of (2) presents

Darcian damping force insuring zero velocity of solid phase; P presents dimensionless reciprocal perme-

ability constant, whereas dc is small number used solely to prevent division by zero in calculations. This

term vanishes in liquid phase only regions (fl ¼ 1), where (2) becomes standard (dimensionless) Navier–

Stokes equation.

The specific enthalpy–temperature relation reads

H ¼ Hþ fl
Ste

: ð3Þ

By the definition of dimensionless temperature H ¼ ðT � TMÞ=ðTl � TMÞ, solid and liquid phase are char-

acterized by negative and positive value of H, respectively. However, in order to solve (1) numerically, the

approximation of the phase change within the temperature interval ½�DH;DH� (DH > 0) is introduced.

Thus, fl equals

fl ¼ min 1;max 0;
H� DH
2DH

� �� �
: ð4Þ

Even though the model was developed for the cases where phase change appears within temperature in-

terval, it can also be used for the isothermal phase change problems. Hypothetically existing exact solution

of (1) and (2) would exactly match the hypothetically existing solution of the corresponding equations

obtained with the multi-domain formulation. In other words, by using the continuum model no error is

introduced to the solution of the problem.
3. Method of solution

The above transport equations are solved numerically with the control volume (CV) method [15] on

structured adaptive moving grid. The specifics of the implementation can be summarized as follows:

• Field values at CV faces are expressed with linear interpolation, depending on the distance of points be-

longing to neighboring CVs and the middle of their common face. To enhance the stability of the solu-
tion algorithm, the deferred correction [16] is utilized: the upwind interpolation is used implicitly but it

is corrected with the difference between the linear and the upwind interpolation from the previous

iteration.

• The values at corners of CV needed to express fluxes on nonorthogonal grid are expressed in terms of

values of the surrounding points with the bilinear interpolation.

• Fluxes resulting from the grid movement are calculated as proposed by Demird�zi�c and Peri�c [17] obeying
the so-called space conservation law [18].

• Pressure–velocity coupling is implemented via the popular SIMPLE algorithm [19].
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• The grid points for the calculation of the velocity components and the pressure are collocated; well

known checkerboard pressure problem is avoided as suggested by Rhie and Chow [20].

• Fully implicit temporal differentiation is employed to march solution forward in time with time step

DFo.
• The discretization of transport equations on a 2D nonorthogonal structured grid results in the algebraic

equation which can be written in standard form aP/P þ
P

nb anb/nb ¼ bP with the coefficients a and the

non-homogeneous term b; the index nb runs over the neighbor CVs forming a nine-point computational

molecule in 2D. The system of equations obtained by the discretization on all CVs is solved iteratively

with the Modified Strongly Implicit Procedure (MSIP) [21]. For the pressure correction equation, mul-

tigrid version of MSIP is used.

Further details of the discretization are omitted for briefness and can be obtained from author upon

request. The solution algorithm can be summarized with the following scheme:
(1) initialization Fo ¼ 0:0, V ¼ 0:0, H ¼ H0;

(2) calculation of a grid shape control function K;
(3) grid generation;

(4) calculation of geometrical coefficients and grid velocity;

(5) beginning of the time step Fo :¼ Foþ DFo;
(6) calculation of temperature H and liquid phase fraction fl;
(7) solution of the equation for the specific enthalpy H field;

(8) solution of the equation for the velocity V field (SIMPLE algorithm);
(9) if convergence is reached then goto step 2, else goto step 5.

The convergence inside the time step is recognized when the norms of the residuum of all calculated fields

(H and V) are reduced by a factor e compared to those from the beginning of the time step.

In the presented algorithm the grid shape for the (nþ 1)th time step is controlled with the grid control

function K which depends on the calculated fields from the previous, i.e. nth time step. This strategy as-

sumes that K changes relatively slowly in time, thus the solution can be presented well on the grid which

depends on the solution from the previous time step. If this was not true, then the grid would have to be

generated after each iteration inside the time step. This would however increase the total computing time
required for the grid generation. In the rest of this section, the grid adaptation method is described.
3.1. Grid generation

A new grid is generated after each time step using elliptic grid generation with grid density control [13],

i.e. by solving a system of elliptic PDEs

r � ðK�1rnÞ ¼ 0 and r � ðK�1rgÞ ¼ 0 ð5Þ

for the computational coordinates n and g running in S–N and W–E directions, respectively. The density of

the coordinate lines (n ¼ const: and g ¼ const:) is proportional to user-defined scalar function K. To

construct computational grid, physical coordinates must be expressed in terms of computational coordi-

nates [22]. This is done by interchanging the role of dependent and independent variables in (5); after some

mathematical manipulation Anderson [13] obtains

aunn � 2bung þ cugg ¼ �K�1 ½aun

�
� bug�Kn þ ½cug � bun�Kg

�
; ð6Þ

where a, b and c are the components of covariant metric tensor and u is either of the Cartesian coordinates
X or Y . It should be noted that Anderson used function D which is inversely proportional to grid density.

Here, K � D�1 is used simply because of easier interpretation. By using the product rule for differentiation

(6) is changed to
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aunn � 2bung þ cugg ¼
1

2
K a½K�1un�n
�

� b½K�1ug�n � b½K�1un�g þ c½K�1ug�g
�
: ð7Þ

The above form is, in authors view, more suitable for discretization. Namely, the situation is analogous
when, for example, the difussive flux ½k/x�x is discretized directly or as kx/x þ k/xx; only the use of proper

relation between the value of k at grid points and the value at intermediate points leads to the equivalent

result. Eq. (7) is discretized with the finite differences method; the coefficients of resulting algebraic equation

aPuP þ
P

nb anbunb ¼ 0 are:

aE ¼ a 1

�
� 1

2

KP

Ke

�
þ b

KP

8
ðK�1

n � K�1
s Þ;

aW ¼ a 1

�
� 1

2

KP

Kw

�
� b

KP

8
ðK�1

n � K�1
s Þ;

aN ¼ a 1

�
� 1

2

KP

Kn

�
þ b

KP

8
ðK�1

e � K�1
w Þ;

aS ¼ a 1

�
� 1

2

KP

Kw

�
� b

KP

8
ðK�1

e � K�1
w Þ;

aNE ¼ � 1

2
b 1

�
� KP

4
ðK�1

n þ K�1
e Þ

�
;

aNW ¼ 1

2
b 1

�
� KP

4
ðK�1

n þ K�1
w Þ

�
;

aSE ¼ 1

2
b 1

�
� KP

4
ðK�1

s þ K�1
e Þ

�
;

aSW ¼ � 1

2
b 1

�
� KP

4
ðK�1

s þ K�1
w Þ

�
;

aP ¼ aE þ aW þ aN þ aS;

ð8Þ

where capital subscripts, in accordance with commonly used compass notation [15], denote points of nine

point computational molecule, whereas small subscripts denote intermediate points. When calculating

coefficients (8), K is first interpolated to positions ne, nw, se and sw. Then, KP is calculated as

KP ¼ 1
4
ðKne þ Knw þ Kse þ KswÞ and Ke, for example, as Ke ¼ 1

2
ðKne þ KseÞ.

For the considered cavity, the following boundary conditions are employed:

X ðnminÞ ¼ 0; X ðnmaxÞ ¼ 1; XgðgminÞ ¼ 0; XgðgmaxÞ ¼ 0; ð9Þ
Y ðgminÞ ¼ 0; Y ðgmaxÞ ¼ 1; YnðnminÞ ¼ 0; YnðnmaxÞ ¼ 0; ð10Þ

where nmin, nmax, gmin and gmax are values of n and g at left, right, bottom and top wall of the cavity, re-

spectively. Boundary conditions (9) and (10) ensure grid orthogonality at the boundaries and thus the

boundary conditions for (1) and (2) are simpler to implement.

To generate grid (7) is solved with MSIP interchangeably for X and Y , updating the coefficients (8) after
every new X � Y solution, until the convergence is reached. The grid from previous time step is used as the

starting approximation.
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3.2. Grid density control

In presented work the control function K is calculated as follows. First, function K0 is defined as a linear
combination

K0 ¼ 1þ
X
n

Cnkfnk; kfnk ¼ fn

R
dVR

jfnj dV
; ð11Þ

where kfnk is a normalized function of calculated fields and Cn is a weighting coefficient. The normalization

is used to maintain the relative influence of fn in K0, determined by Cn. As K is user defined function,

unnormalized functions can also be used when appropriate. However, when fn is a gradient of a discon-
tinuous function the normalization is necessary, as shown later in this section.

K is obtained by smoothing K0 with Laplace operator, i.e. by time integration of the diffusion equation:

oK
os

¼ r2K; Kðs ¼ 0Þ ¼ K0 ð12Þ

in time interval ½0; sD�, where s is used to avoid confusing with the physical time t of the process. Therefore,
K0 is the initial state of K and sD presents the smoothing factor. However, the diffusion length LD ¼ 2

ffiffiffiffiffi
sD

p
is

used instead of sD because of its easier physical interpretation. On boundaries, Neumann�s conditions
oK=on ¼ 0 are set. Eq. (12) is solved with CV method using the same grid as for transport equations (1) and

(2), i.e. the grid K0 was calculated on. Fully implicit time discretization is implemented; the resulting system

of linear equations is solved with MSIP. The size of time step Ds ¼ sD=nD, where nD is number of steps,

influences the solution�s accuracy, however it does not seem essential for the accuracy of the overall so-

lution. In this work nD was set to 5.

Another issue has to be addressed in this section. Namely, in presented application, gradient of the

discontinuous function fl is used to refine the grid near the interface. The calculated value of krflk is
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Fig. 2. krHðxÞk smoothed with LD ¼ 0:01 (a) on different grids (nD ¼ 128) and (b) using different number of time steps nD
(Dx ¼ 1=160).
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proportional to grid density. As simultaneously, grid density is proportional to krflk, this would seemingly

result in unbounded value of krfnk and �infinite� grid density at discontinuity. However, this is prevented

with the above described normalization and smoothing of K. To demonstrate this, smoothed krHðxÞk is
calculated on one-dimensional successively refined uniform grid on domain ½�0:5; 0:5� where HðxÞ is

Heaviside step-function. As Fig. 2(a) shows, the smoothed krHðxÞk converges to diffusion equation�s
fundamental solution ð

ffiffiffi
p

p
LDÞ�1

expð�ðx=LDÞ2Þ. This is not surprising as krHðxÞk can be interpreted as

discretized Dirac d function, i.e. fundamental solution at sD ¼ 0:0. Fig. 2(b) shows the influence of nD on

smoothing precision.

The described grid density control function determination may seem complicated when compared for

example with the methodology used by Beckett et al. [12], who used already smooth function

1þ l1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2

2jr� r�j2 þ 1Þ
q

with r� the closest point to the phase front. In their method the grid density can

easily be controlled with parameters l1 and l2, on the other hand, r� needs to be determined. This can be

rather complicated in 3D, as authors recognize, whereas the implementation of the presented method in 3D

is straight forward. Also, the presented method is more general as grid density can easily, besides being

increased near the interface, be adjusted with respect to other calculated fields.
4. Melting by conduction

When convection is not present, the problem becomes essentially one-dimensional, depending only on

the coordinate X . In this case, Neumann�s analytical solution [23] describes the temperature field

Hanal:ðX ; FoÞ ¼ 1� 1
erfðaÞ erf

X
2
ffiffiffiffi
Fo

p
� �

; 06X 6X anal:
i

0; X > X anal:
i

(
ð13Þ

where the interface position X anal:
i is determined by X anal:

i ¼ 2a
ffiffiffiffiffi
Fo

p
. The parameter a depends on Ste via the

relation
ffiffiffi
p

p
aea

2
erfðaÞ ¼ Ste. The above solution was obtained originally for a semi-infinite body but it is

also valid for the presented case until phase interface reaches the right wall of the cavity at Fo ¼ ð1=4Þa�2.

Neumann�s solution is therefore used for testing and assessment of the presented method by comparing the

calculated and the analytical values of the interface position Xi and the heat flux at the left wall – Nusselt
number Nu. The heat flux at the left wall Nuanal: is obtained with derivation of (13)

Nuanal: ¼ � oHanal:

oX

����
X¼0

¼ 1

erfðaÞ
ffiffiffiffiffiffiffiffi
pFo

p : ð14Þ

Presented are the calculations for Ste ¼ 0:1 (a ¼ 0:220016); the corresponding analytical values X anal:
i and

Nuanal: are shown in Fig. 3. For 1D case, the system of algebraic equations, resulting from discretization, can

be solved directly with the tridiagonal matrix algorithm; so 1D solver (i.e. code) was used to obtain so-
lutions presented in this section. As the 1D solver is faster than 2D solver, the convergence criteria inside

the time step can be defined much more rigorously, i.e. by using very small number e ¼ 10�9. Therefore,

only discretization error may be considered in this section. The size of the melting interval is defined by

setting DH ¼ 10�5; reducing DH does not have noticeable influence on the calculated results.

The interface position in 1D case equals the total liquid fraction in the cavity and is therefore obtained as

Xi ¼
R 1

0
fl dX ¼

P
j fljDVj. Nu is calculated simply as the temperature difference of near boundary points

divided by their distance: Nu ¼ �ðT2 � T1Þ=ðX2 � X1Þ, where 1 is index of the left boundary point.

If fixed uniform grid is used to solve the heat transfer equation, the calculated Nu exhibits well-known
step-like or wavy pattern (Fig. 4) which was described, for example, by Date [24]. The reason for this
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pattern is the following: the temperature of the CV at which melting takes place – �the melting CV� is within
the melting temperature interval, i.e. almost constant and the temperature field almost settles until the

melting CV completely �melts�. The calculated Nu is larger than Nuanal: until Xi passes the center of the
melting CV and smaller afterward. This step-like pattern depends on the Ste; smaller Ste results in sharper

steps. Refining the grid, i.e. reducing the size of the melting CV, results in smaller amplitude and higher

frequency of the oscillations.



Table 1

Grid control functions K0 and diffusion lengths LD defining grid shape

G1 G2 G3 G0-uniform

K0 1þ krflk 1þ krflk 1þ 2:0krflk 1

LD 0:05 0:01 0:05 –
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The step-like pattern of Nu can be diminished by reducing the size of the melting CV which can be

achieved effectively with the adaptive moving grid. On the other hand, the use of adaptive moving grid

introduces additional source of the discretization error as the interpolation on moving CV boundaries is

needed; the linear interpolation is used. Also upwind interpolation and SMART scheme [25] are tested in

this section.

To demonstrate the influence of weighting coefficient in K0 and LD, three different grid shapes are de-

fined; grids are marked as Gn
s where n is the number of CVs and s is shape number as written in Table 1.

Fig. 5 presents grid trajectories of grids G25
1 , G

25
2 and G25

3 . The solutions obtained on them cannot be dis-

tinguished from the analytical solution on the scale of Fig. 3. Therefore, relative errors of Nusselt number

ðNu� Nuanal:Þ=Nuanal: ¼ DNu=Nuanal: and errors of the interface position DXi ¼ Xi � X anal:
i are compared.

Figs. 6(a), (c) and (e) exhibit DNu=Nuanal: calculated on grids with 25, 50 and 100 CVs, respectively. Figs.

6(b), (d) and (f) present the corresponding DXi. The comparison of errors on different grid shapes with the

same number of CVs shows that the most accurate solution is obtained using the shape G2. Obviously, the

error depends on grid density around the phase interface – the larger the density the smaller the error.

Whereas DNu is obviously smaller on adaptive grid, the error DXi appears larger on the adaptive grids than
on the uniform grid. However, Figs. 6(b), (d) and (f) may be misleading, as jDXij is much larger on the

uniform grid in the beginning of the process, yet previously described step-like behavior on the uniform grid

leads to oscillations of DXi around zero. Namely, DXi is a cumulative quantity; since the amplitude of

oscillations of DXi is smaller on adaptive grids than on uniform grid, this means that the solution on former

is more accurate. This is especially true for solutions using grid shape G2 for which DXi in Figs. 6(b), (d) and

(f) appears almost constant.

Adaptive moving grid requires small enoughDFo in order to prevent large movement of CVs (compared to

their size) in a single time step. Namely, this increases error and can also cause the divergence of the solution.
Time step DFo in calculations, referred in Fig. 6 is set to the rather small value 10�6, yet larger value can be

used for most cases. The influence ofDFo on solution�s accuracy when using gridG25
1 , is shown in Fig. 7(a); the

solution is virtually the same when DFo ¼ 10�4 � 10�6 and it is still useful for DFo ¼ 10�2, however, the
Fig. 5. Grid trajectories for grids G25
1 (a), G25

2 (b), G25
3 (c).
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Table 2

Maximum DFo size for different grids

G25
1 G25

2 G25
3 G50

1 G50
2 G50

3 G100
1 G100

2 G100
3

10�2 10�4 10�2 10�2 10�5 10�3 10�3 10�5 10�3
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Fig. 7. Error DXi calculated on grid G25
1 using different DFo (a); average error DNu calculated on various grids as function of DFo (b).
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method fails to converge forDFo ¼ 10�1. Fig. 7(b) displays average errorDNu for different grids as function of
DFo, where in integrationDNuðFo ¼ 0Þwas set to 0.MaximalDFo, tested in powers of 10, is written in Table 2.
Clearly, the use of presented adaptive moving grid introduces additional limitation on the size of DFo, which
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Fig. 8. Errors DNu=Nu (a) and DXi (b) calculated on grid G25
1 using different interpolation schemes.



J. Mencinger / Journal of Computational Physics 198 (2004) 243–264 255
should be smaller for denser grids. Nevertheless, in practice, this may not present real limitation for cases

where the calculation of velocity and other fields requires small time step (stiff problems) for sufficient time

resolution. This is also true for the cases and grids presented in the next section.
Besides linear interpolation, the method was also tested with upwind interpolation and SMART scheme

[25]. The latter offers a compromise between the precision of QUICK scheme and the demand for

boundedness. Comparison of the schemes for grid G25
1 can be seen from Fig. 8. The upwinding results in less

oscillatory behavior compared with the linear interpolation and also smaller DNu on the chosen grids; DXi is

larger, yet again less oscillatory. The problem of upwinding is a tendency to smear the interface due to

scheme�s diffusiveness. This can cause rapid change in K if it depends strongly on krflk. Smooth grid

movement is then ensured with some relaxation of K, so K :¼ aKKþ ð1� aKÞK�, where K� is the control

function from the previous time step. Setting aK ¼ 0:5 proved to be appropriate. SMART scheme exhibits
similar precision as linear interpolation and due to its boundedness insures physically realistic results, i.e.

temperatures within the interval ½�DH; 1:0�. SMART scheme is therefore good alternative to linear in-

terpolation, even though its implementation is somewhat more complicated.
5. Melting by convection

The presented method is tested on cases proposed by Gobin and Le Qu�er�e [1]. The cases are defined by
parameters written in Table 3. Using the assumptions stated in Section 4, cases #1 and #2 present the

melting of tin in a 0.1 m high cavity, with the temperature difference Tl � TM ¼ 0:3 and 3 K, respectively.

Cases #3 and #4 correspond to the melting of octadecane (paraffin) in the same cavity with a temperature

difference of 1 and 10 K, respectively.

As the reference solution does not exist for the considered cases, the accuracy of the obtained numerical

solutions can only be estimated. Compared with the previous section, 2D cases are computationally sig-

nificantly more demanding than 1D cases. Therefore, the time step convergence criteria are less rigorous; e
is set to 10�3. However, solver was tested on conduction case from previous section to produce the same
results as 1D solver. In all the calculations presented in this section, DH was set to 10�5.

For briefness and also because of limited computational resources, only one grid type is used. The grid

density is controlled with the function

K0 ¼ 1þmax krflk;
1

2
krHbk;

1

2
krUk; 1

2
krV k; 1

2
krHk

� �
; ð15Þ

where Hb denotes the Heaviside step-function with the �step� at the contact of cavity walls and liquid. This

way the grid density is controlled at boundaries of liquid-phase domain. K is obtained from K0 by setting

LD ¼ 0:05. Grids with 40� 40, 80� 80 and 128� 128 CVs are used for each case. Average Nusselt number

at left wall Nu, total liquid fraction fl and interface positions are compared.

Case #1 is expected to be computationally the least demanding, due to moderate Rayleigh number. The

solution, i.e. streamlines, temperature field and corresponding 80� 80 grid at different instants is shown in
Fig. 9. Figs. 10(a) and (b) show good agreement of Nu and fl, calculated on differently dense grids. The

corresponding Neumann�s solution is also drawn to emphasize the relative influence of convective heat
Table 3

Dimensionless parameters defining the four cases

Case #1 Case #2 Case #3 Case #4

Pr 0.02 0.02 50.0 50.0

Ra 2:5� 104 2:5� 105 1:0� 107 1:0� 108

Ste 0.01 0.01 0.1 0.1



Fig. 9. Streamlines, temperature field and grid for case #1 at Fo ¼ 4:0, Fo ¼ 10:0, Fo ¼ 20:0 and Fo ¼ 30:0 calculated using 80� 80 CVs.
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Fig. 10. Results for case #1: Nu at left wall (a), total liquid fraction fl (b) and corresponding magnified pictures (c) and (d), interface

positions: compared with [1] at Fo ¼ 10:0 (e) and magnified at Fo ¼ 20:0 (f).
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transfer. Amplified picture of Nu in Fig. 10(c) reveals that calculated Nu is not a smooth function of Fo. On

the other hand, fl appears smooth on the same scale, as Fig. 10(d) shows. The origin of the roughness, i.e.

oscillations of Nu is the same as described in the previous section. So, larger amplitude and smaller frequency
of oscillations appear on coarser grid, which agrees with the results from the previous section. For this case,

fixed uniform grids with 80� 80 and 160� 160 CVs were also used. The results agree with those calculated

on adaptive moving grid as shown in Fig. 10(c); the amplitude of oscillations is the largest on the coarser

uniform grid. By simple comparison of Nu, one can estimate that the accuracy of the solution on 80� 80

adaptive grid is comparable with the one on 160� 160 uniform grid. The same can be assessed fromFig. 10(f)

which enables the comparison of the calculated interface position at Fo ¼ 20:0. Fig. 10(e) shows the com-

parison against some of the solutions at Fo ¼ 10:0 from [1]; the solutions agree reasonably well.

Case #2 exhibits different physical behavior than case #1 as can be seen in Fig. 11. In the beginning of
the process, a multicellular flow structure forms in the melt which agrees with the results of Wintruff et al.

[26] and with analysis of Le Qu�er�e and Gobin [27]. Stella and Giangi [28] obtained similar behavior in their

simulation of pure gallium melting. Recently, Hannoun et al. [29] confirmed multicellular flow in their

comprehensive study. As shown in Fig. 12(a), Nu oscillates. This oscillatory behavior agrees with the results

of Mohamad and Viskanta [30]. In their simulation of natural convection of low-Pr fluids in square cavity,

oscillatory behavior appears if Re is larger than Pr-dependent critical value. In order to capture oscillatory

behavior properly, DFo should be sufficiently small, as Fig. 12(c) illustrates; the figure presents Nu, cal-
culated on 80� 80 grid with DFo was set to 10�4, 5:0� 10�5, 2:5� 10�5 and 10�5. All calculations were
started from the same state at Fo ¼ 3:0.

All set values of DFo can be considered appropriate as essentially the same physical behavior is obtained,

i.e. flow instability which leads to merging of two dominating flow cells to one cell. Of course, smaller DFo
should be used to enhance the precision. Fig. 12(d) shows Nu at earlier instability leading to transition of

flow pattern with three to two main flow cells; the instability appears from Fo � 1:4 on 40� 40 grid to

Fo � 1:85 on 128� 128 grid. The oscillations of Nu which originate from the discretization, as already

discussed, are not noticeable for case #2. The reason for this is that the calculated �physical� oscillations
have substantially larger amplitude and frequency. In Figs. 12(e) and (f) the calculated interface position at
Fo ¼ 4:0 and Fo ¼ 10:0, respectively, is compared against solutions from [1] with multicellular flow. The

solution of Hannoun et al. [29] at Fo ¼ 4:0 is also included in Fig. 12.

Case #4 exhibits similar physical behavior as case #3, however with considerably larger heat transfer.

Therefore, only case #4 will be presented: streamlines, temperature and grid (80� 80 CVs) are displayed in

Fig. 13. Compared with cases for tin, the convective heat transfer has a more important role, as Figs. 14(a)

and (b) illustrate. The influence of the grid size on the obtained solution is shown in Figs. 14(c)–(f). Again,

calculated interface position is compared against some results from [1] at Fo ¼ 0:06 and Fo ¼ 0:1 in Figs.

14(e) and (f), respectively. The largest difference in the interface position appears at the top. This can be
explained by the fact that the grid around the top of the solid–liquid interface is not sufficiently refined in

horizontal direction which can be seen in Fig. 13. This also explains why NuðFoÞ is still relatively rough, as

smoothness of NuðFoÞ depends extensively on the grid density around the interface. Even though oscilla-

tions appear to be numerical artifact, the question can be asked, if some oscillations could also result from

changing geometry due to interface movement.

The time step size DFo, average number of iterations per time step N iter and approximate relative CPU

time required for grid generation rgridgen are given in Table 4. It shows that the grid generation requires from

20% to 30% of total computing time. This ratio depends on the precision of grid generation; in the pre-
sented calculation the convergence is considered when initial residuum is reduced by factor 5� 10�2. To run

the simulation until 95% of the matter is melted, the total CPU time on 1.6 GHz AMD Athlon (Linux OS &

Intel Fortran 7.0 compiler) varies from �50 h for case #4 on 40� 40 grid to �120 days for case #2 on

128� 128 grid. The latter is however ran with relatively small DFo ¼ 2:5� 10�5, thus requiring approxi-

mately 106 time steps.



Fig. 11. Streamlines, temperature field and grid for case #2 at Fo ¼ 0:4, Fo ¼ 1:0, Fo ¼ 4:0 and Fo ¼ 10:0 calculated using 80� 80 CVs.
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Fig. 13. Streamlines, temperature field and grid for case #4 at Fo ¼ 0:06, Fo ¼ 0:1, Fo ¼ 0:2 and Fo ¼ 0:4 calculated using 80� 80 CVs.

J. Mencinger / Journal of Computational Physics 198 (2004) 243–264 261



Fig. 14. Results for case #4: Nu at left wall (a), total liquid fraction fl (b) and corresponding magnified pictures (c) and (d), comparison

of interface positions at Fo ¼ 0:06 (e) and Fo ¼ 0:1 (f) with [1].
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Table 4

Time step size DFo, average number of iterations per time step N iter, and relative CPU time required for grid generation rgridgen

Case Grid DFo N iter rgridgen

#1 40� 40 1:0� 10�3 12.8 �0.24

#1 80� 80 1:0� 10�3 12.3 �0.29

#1 128� 128 5:0� 10�4 11.4 �0.25

#2 40� 40 5:0� 10�5 11.7 �0.23

#2 80� 80 1:0� 10�4 10.6 �0.27

#2 128� 128 2:5� 10�5 9.1 �0.29

#4 40� 40 2:0� 10�6 33.2 �0.21

#4 80� 80 1:0� 10�5 45.2 �0.20

J. Mencinger / Journal of Computational Physics 198 (2004) 243–264 263
6. Conclusions

The work shows that using the adaptive moving grid in phase change system is effective because the grid

generation requires a relatively small fraction of total computing time, at least for the presented examples.

For case #1, the solution on 80� 80 adaptive grid is comparable with the solution on 160� 160 uniform

grid. To assess the efficiency more precisely, adaptive and fixed grid solutions should be compared in other

cases as well, which would however require additional computational resources. It is reasonable to expect
that the method�s efficiency is larger for cases where larger gradients appear.

For cases with low Pr, Stella and Gaingi [28] stated that �only the use of a fine mesh allows the obser-

vation of the multicellular flow structure�, which is also confirmed by the work of Hannoun et al. [29].

Presented method, however, proves to be useful also with small grids; even on coarse 40� 40 grid it

captures well the physical behavior of the system such as the flow instabilities in case #2. Presented so-

lutions suggest that the origin of the discrepancies of contributed solutions in comparison exercise [1] could

simply be insufficient grid density for the specified cases.

When compared with an interface-tracking, the presented method is more general because it is applicable
for temperature interval phase change problems, such as the solidification of binary mixture. Also, its

implementation for three-dimensional problems is straight forward. In addition, the reduction of a number

of CVs, when compared to uniform grid, would be much larger for 3D problems than for 2D problems.

On the other hand, an interface-tracking method could produce more accurate results for pure sub-

stances as the grid can be fitted �exactly� to the calculated interface. However, the interface would always be

�one step behind� if calculated from the heat flux balance at the previous time step. This is not the case in the

presented method where only the grid is �one step behind� but the interface position is computed implicitly.

Nevertheless, the detailed comparison of the two approaches remains to be done.
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